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The goal of this work is to adapt a nonreflecting outlet boundary
condition, derived from a wave equation, to the numerical solution
of the full incompressible Navier-Stokes equations, for an elliptic
unsteady free shear flow. The numerical results show that a significant
improvement is achieved with this nonreflecting boundary condition, in
comparison with the results obtained by using free boundary layer type
conditions. The physical phenomena studied concern the onset of the
Kelvin—Helmholtz instability in the free (non-forced) shear layer and
certain 2D characteristics of transition towards turbulence. These
phenomena are simulated naturally, without imposing perturbations.
The frequency of the organized vortices and the spread of the mixing
layer are correctly predicted. The performances of the method are
shown through comparison with the physical experiments. Owing to
the nonreflecting boundary conditions, the feedback noises are
inhibited effectively, so that the computation domain can be reduced
and the dynamic characteristics of the flow are maintained up clearly to
the outlet boundary. © 1993 Academic Press, Inc.

1. INTRODUCTION

Artificial boundary conditions are often introduced to the
numerical simulations of external flows (e.g., flows around
airfoils, jets, mixing layers, wakes past bluff bodies, trailing
edge flows, etc.), because there are usuvally no available data
at the free boundaries, which are needed for numerical
reasons. Of course, it is hoped that the artificial boundaries
and the boundary conditions affect the solutions in such a
way that they closely approximate the free space situations
which exist in the absence of these boundaries. Hence, espe-
cially in the case where the unsteadiness of the flow is intrin-
sic, special attention has to be made in order to minimize
the spurious effects of the artificial boundaries on the solu-
tion of the whole field. Concerning the numerical simulation
of elliptic external flows, by using the Navier—Stokes equa-
tions, Dirichlet type or Neumann type boundary conditions
are commonly used. Accordingly, the computation domain
must be large enough so that the feedback noise from the
boundaries is greatly reduced. Nevertheless, the distance
needed is often very long and the cost of the simulation is
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increased undesirably. Hence, it is necessary to study a kind
of boundary conditions needing a reascnable size of the
computational domain. In this paper, a nonreflecting type
boundary condition is developed for the system of the
Navier-Stokes equations in velocity—pressure formulation,
applying to an incompressible unsteady frec shear flow in
the transition towards turbulence. In this kind of flow,
complex physical phenomena are related with the onset
of intrinsic instabilitics, whenever the Reynolds number
becomes higher than a critical value. Furthermore, the
correct prediction of the onset of such mechanisms as weil
as of the roll-up process is strongly related with a suitable
choice of boundary conditions at infinity.

There have been many substantial works contributing to
nenreflecting boundary conditions for dynamical problems
of flows. Engquist and Majda [1] [2] developed a
nonreflecting boundary condition procedure, in which a
pseudo-differential operator was constructed and it was
expanded in the deviation of the wave direction from some
preferred directions of propagation. In this manner, they
designed a boundary condition for absorbing waves inci-
dent on the boundary in certain directions. This boundary
condition, in first order, was successfully tested by Kwak
[3]1 on the small-disturbance equations for unsteady
transonic flows about airfoils. It was demonstrated that the
computation domain can be reduced considerably with this
nonreflecting  boundary  approximation  procedure.
Recently, a comparative study of this type of condition was
reported in the work of Blaschak and Kriegsmann [4].
Similar nonreflecting boundary conditions for hyperbolic
systems were reported by Hedstrom [5] and Thompson
[6]. In the work of Halpern [7] an absorbing boundary
condition of this kind is suggested for a linear advection
diffusion equation.

Bayliss and Turkel [8, 9] developed a radiation bound-
ary condition approach. By assuming that in the far-field the
equations reduce to some simple forms, an asymptotic
expansion solution to the model equation is then con-
structed in terms of a reciprocal radius from the origin. This
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procedure of matching the solution to an expansion that is
valid near infinity requires some knowledge of the solution
in the neighborhood of infinity. This method was applied,
by Bayliss, Gunzburger, and Turkel [10], to elliptic
equations such as the Laplace and the Helmhoitz equations.
In [8,9] it was used in the computation of the full
Navier-Stokes cquations for steady compressible flows. It
has been shown that this type of boundary condition can
accelerate significantly the convergence to steady state.

Rudy and Strikwerda [11] applied the techniques of
Engquist and Majda to subsonic Navier-Stokes calcula-
tions for obtaining a steady state. By assuming that the
pressure is the only physical quantity known at the outlet
boundary of the computation domain, they considered a
steady-state inviscid solution combined with a perturbation
and in this way they constructed a nonreflecting boundary
condition which depends on a free parameter. Optimal
choice of the parameter can substantially accelerate
convergence to the steady state. Nataf [12] designed a
noureflecting boundary condition on the stream function
for the steady incompressible Navier-Stokes equations in
vorticity-stream function formulation, which was proved to
be the most accurate and efficient.

There are few attempts, to our knowledge, to use non-
reflecting type boundary conditions for the Navier-Stokes
equations concerning an incompressible unsteady elliptic
flow. The difficulty comes from the nonlinear and diffusive
nature of the dyamics of this kind of flow. The phenomena
which will be analysed are related to the transition towards
turbulence in a free shear layer flow, at a moderate Reynolds
number (Re=2000). A number of experimental and
numerical studies have shown that an intrinsic unsteadiness
occurs in the flow, due to the onset of a Kelvin—Helmholtz
instability [13, 14]. This unsteadiness, followed by the
establishment of the rolled-up process and the appearance
of vortices after a transition region, depends on the velocity
gradient and Reynolds number. The theoretical model
adopted here for the prediction of this kind of flow is the
system of the Navier—Stokes equations, because this model
allows us to take into account non-linear effects related with
the above phenomena. A previous study of such phenomena
has been done by Kourta, Braza, Chassaing, and Ha Minh
[14]. using free boundary layer type conditions. In the
present paper, we study an outlet boundary condition to
satisfy following exigencies:

— Non-reflecting properties on the outlet boundary;

— Respect of non-linear and diffusive mechanisms of the
flow;

— Matching with the Navier-Stokes systems adopted
inside the domain.

In Section 2, the governing equations and numerical
method are presented. The boundary conditions are
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discussed in Section 3. Section 4 contains the numerical
results to show the performances of the present boundary
conditions, in comparison with the experiments. Finally, the
conclusions are given in Section 5.

2. GOVERNING EQUATIONS AND
NUMERICAL METHOD

The theoretical equations are those of isothermal and
incompressible viscous flow. They are written in a cartesian
coordinates system, in conservative form, and with respect
to the dimensionless variables,

S A S
0 LO LO
(2.1)
p=t,  pr=L '
T, Py
obtained by the following reference variables:
L |
U()s LO') p05 T{):_O’ P():ngé {22)
U, 2

In the following, the symbol (*) is suppressed for the
dimensionless variables.

For a two-dimensional flow, the equations of motion are
written

du  ov

— 42220 2.3

dx dy (23)
Cu 1 apP
—+di Vi———d = — — .
py +divi(z¥) Re div(grad «) ™ (24)
dv 1 oP
— 4+ di Yi——dj = — — .
o+ iv(eV) e div(grad v) o (2.5)

where
Re— UgLopg
u

is the Reynolds number and u is the molecular viscosity.
The numerical method is developed by Braza and
registered as solver DIANE (directions implicites alternées
pour Navier-Stokes equations), in the CNUSC-IBM joint
project C3NI (Centre de Compétences en Calcul Numeéri-
que Intensif) [15-17].
The momentum equations are soived at the (n+ 1) time
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step for an approximate velocity field V* by using a guessed
pressure field, P* = P™

ut—u" 1 apP"
ey L "
T + div(u*V") e div(grad u*) x
p* — o 1 3P (26)
+div(p*V") — — div(grad v*) = — .
Re &y

The true velocity field at the (n + 1) time step is given by
V"t =V*_grad ¢, (2.7)

where ¢ is an auxiliary potential function. This is calculated
by the Poisson equation

Vg =div(V¥), (2.8)
obtained by claiming:
div(v*+ 1) =0. (2.9)

The pressure at the (n+ 1) time step is calculated by the
equation

grad P"*' = grad (P" + _,jir) +div(V" grad ¢)

1
—-——V?(grad 2.1
eV (grad ¢), (2.10)
or by the more simplified equation,
Pl = P & $fA1, {211

giving practically the same results for a moderate Reynolds
number range [16, 171,

A semi-implicit second-order accurate scheme in time and
space is used. The equations arc integrated over finite
volumes. The staggered grids of Harlow and Welch [18]
are used for velocity and pressure fields. An alternating
direction implicit method is used for the time-dependent
discretization. The detailed descriptions can be found in
[15-17].

3, BOUNDARY CONDITIONS

The domain of computations is shown in Fig, 1. At the
entry of the domain, the boundary conditions are Dirichlet
type, imposed by the nature of the velocity gradient (Fig, 1):

0.5,
1.0,

O<y<h,

u(O,y)={ h<y<H

v(0, y)=0.

(3.1)

241

¥
H
—Fu.
h g - .
L —p Pl P2
i I_!2

=
=

FIG. 1. Computation domain.

On the upper and lower free boundaries, different kinds of
boundary conditions were tested by Kourta et al. [14]. It
was found that the more appropriate conditions were those
derived by considering these boundaries as streamlines,
where

du

=0, =
v ay

0. (3.2)

Outlet Boundary Conditions of Type 1

The outlet boundary condition plays an important role in
the numerical simulations of free flows. It is usually sup-
posed that this boundary is put sufficiently far from the
origin of the mixing layer, so that the classical free boundary
layer hypotheses and the similarity lows are satisfied. Hence
the following boundary conditions are used, which are
derived by supposing that the flow has a prefered direction
{along x} and 2V/dt =0 at the boundary:

&u )
ﬁ—o, ago.

{3.3)

These boundary conditions were successfully used for the
flow past a backward facing step [19] and for a mixing
layer flow [14] at lower Reynolds numbers.

However, this type of boundary conditions requires a
large distance x. This leads to heavy CPU time and memory
storage. If the computation domain is not large enough so
that the flow could reach the region of the similarity
assumptions, the above outlet boundary conditions always
present the problem of non-physical feedbacks. As will be
shown in Section 4, although the instability nature and roil-
up processes of the flow have been simulated well, it appears
that the vortices hit against a “wall,” while they are going
out of the domain.

The computations are carried out with this kind of
boundary condition in order to examine the efficiency of the
nonreflecting boundary conditions, derived in the following,

Nonreflecting Qutlet Boundary Conditions (Type IT)

Since orderly coherent structures and sequential merging
of vortices constitute the primary mechanisms for the
spreading of the mixing layer in the downstream direction,
and because the flow shows a pseudo-periodicity in time
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and in space [13,20,21], the velocity field displays -

qualitatively wavelike features. Hence, the boundary condi-
tions should simulate the propagation of waves out of the
computational domain; that is to say, they should allow the
motion of outgoing flow to pass through the boundary
without being reflected. In this way, we consider using a
wave equation to match the Navier—Stokes equations on
the outlet boundary for the present viscous unstcady
probiem,

The velocity vector V is considered as a transported
wave quantity incident on the boundary. Considering the
feature of the present viscous elliptic flow, an anisotropic
propagation wave equation is taken on the boundary. In
two dimensions, it can be written as

v L8V
———c

av 5 3V
a2 axt

_VE}?=O; (343)
¢, and ¢, are the characteristic velocities of the wave
propagation in the x and y directions, respectively. The
technique of Engquist and. Majda [1,2,4] is adopted
to provide the absorption properties, and the pseudo-
differential operators
LV=c2DIV4IDIV-DiV=0 (3.4b)
are introduced, where D2, D?, and D} designate the second

partial derivatives in respect to the x, y directions and to the
time 1. The factorization of the wave operator, L, gives

LV=L*L"V=0,

where

L*=¢, D, +D, /1-5 (3.52)
and

L~=¢,D,—D,\/1-5 (3.5b)

with:
s=c,D,/D,. (3.6)

The relation

L*vV=0 (3.7)

applied to the outlet boundary is a total absorption (non-
reflecting) condition [1, 2, 47.

As the pseudo-differential operator is nonlocal in both
time and space variables, the following Padé-approxima-
tions of the square root . /1 — 52 are used:
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First approximation,

J1-52~1; (3.8)

then (3.7) can be written |
(c.D.+D)V=0. (3.9)

Second approximation,
J1=F 21— 1% (3.10)
then (3.7) can be written as
(c DX+D,——C§—D2)V=O. (3.1)
* 2D, 7

The coefficient ¢, appears because of the anisotropic
character in present analysis.

In comparison with the Navier-Stokes equations, the
diffusion term, in (3.11), is reasonably set as vé8*V/dy? and
the propagation velocity ¢, is made equal to u component
in order to match this equation to the Navier—Stokes ones.
Hence, the equation

av. é*v 0
A A A
Ox ay*

oV

St (3.12)

is obtained, where v is the coefficient of kinematic viscosity.

It can be noted that Eq.(3.12) maintains a non-linear
character as the Navier-Stokes equations do at the inner of
domain and it ensures a non-reflecting type condition. This
equation is then used as an outlet boundary condition in the
present Navier—Stokes solver.

An implicit second-order central approximation in time is
used for the discretisation of Eq. (3.12) [22]. We have

ynt 1/2_Vn +u_n |:(a_v-)n+1/2 N (a_v)n]
A1f2 2 |\ 8x éx

a2v H
=v(—2) + 0(41?) (3.13)
dy
for the time step n+ 1/2 and
Vn+1_vn+un (ﬂ)'”-] N 6V L]
At 2 [\ ox (6x
ZV n
=v (€—> + O(41?) (3.14)
ay*

for the time step .
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Boundary Conditions for the Function ¢

The boundary conditions for the auxiliary potential
function ¢ are deduced from the velocity conditions and
from Eq. (2.7),

Vi V¥ = —grad ¢ (3.15)
by supposing that the velocity vectors V"' and V* have

the same expressions as the boundary conditions.
Hence, at the entry of the domain,

% 0.

ox {3.16)

Along the upper and lower free boundaries,
- (3.17)
At the outlet boundary,

(3.18)

for type I boundary conditions.
For the case of boundary conditions of type 11, replacing
V"+ 1 by u"t! and u*, respectively, in (3.14), we have

substracting (3.20) from (3.19}), we can obtain

1 u" 0
_ A+l _ % _ n+1l_ ok =0, 21
m(u u)+26x(u u*)=0 (3.21)
By claiming (2.7)
w't ! —u* = 3¢/ox, (3.22)
we obtain the outlet boundary condition for ¢:
" 2
09 WATY_ (3.23)

ox 2 ax?

The initial conditions are taken to be those of the ideal
fluid flow, with respect to the inlet velocity gradient in the
whole region (Fig. 1). In [ 14], it was demonstrated that the
flow forgets the initial conditions after a transient phase.

4. RESULTS

Three numerical tests are carried out on the IBM 3090-
600-VF computer of the CNUSC (Centre National Univer-

WP T IO\ fau\” sitatre Sud de Calcul). The computation domain is shown in
_At—“'_f [(E) + (5) ] Fig. 1 and the numerical parameters are given on Table 1.
The Reynolds number 2000 is based on a unity length and
_ > u\" AL 319 velocity scale. In the following, the performances of the out-
=V (?) +04r7) (3.13) let boundary conditions of type I and type Il are compared
first. Then the influence of the size of the domain (x direc-
and tion}, with the boundary condition of type 11, is analysed.
Comparisons with experimental results are finally given.
w¥— " wtT/BuNE [ ou\” With both boundary conditions (tests A and B), the
At P [(5;) + (a) :| solver .is able to generate naturglly, v\fithout imposin.g per-
) turbations, the onset of a non-linear instability, leading to
_ u 2 transition waves followed by the roll-up process. These
=y (—2) + O(A4r°); (3.20) . .
features, analysed experimentally in the work of Brown and
TABLEI
Numerical Parameters

Number of Size of Type of CPU time/ Total

Test of grid points domain Ax i boundary time-step time

computation (NX«NY) (L« H) h AY in At condition (second) step

A 102 x 36 67.19 x 14.69 10.30 0.1 0.01 1 0.568 15,000

B 102 x 36 67.19 x 14.69 10.30 0.1 0.01 IT 0.574 15,000

c 9236 59:15 x 14.69 10.30 01 001 I 0465 9,000
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FIG. 2. Time-dependent evolution of the velocity and the pressure coefficient, x = 18.31, y = 10.25: (a) with boundary conditions of type [; (b} with

nonreflecting boundary conditions.

Roshko [13], Freymuth [20], Ho and Huerre [21],
among others, are a consequence of the steep velocity
gradient at the origin of a free shear layer, whenever the
Reynolds number becomes higher than a critical value. In
[14], these mechanisms were simulated numerically for

lower Reynolds number values. In the present case.

{Re = 2000}, the same mechanisms are obtained.

Figure 2 shows the time-dependent evolutions of the
velocity and pressure coefficients at x=18.31, y=10.25
{point P1 in Fig. 1}, with the boundary conditions of type |
and type I, respectively. It is recalled that the pressure coef-
ficient is calculated as (P~ P,)/0.50U:. The periodic
character of the flow is shown clearly. Nevertheless, the

boundary conditions of type I seem to display some non-
physical irregularities when ¢ > 95 (Fig. 2a). Especially, the
pressure coefficient oscillations increase dramatically. This
problem becomes more severe downstream (see Fig. 3a,
x=65.77, y=10.25, point P2 in Fig. 1). It seems that the
flow is alternatively pressed and drawn by the outlet
boundary before and after the vortices traverse across
the boundary. However, these irregularities are greatly
inhibited in the case of boundary conditions IL.

Figure 4 shows the iso-pressure coefficient plot with
boundary conditions I, at r = 60. An irregular behaviour can
be seen near the outlet boundary. This problem becomes
more pronounced at t =100 (Fig. 5), where the structure of
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FIG. 3. Time-dependent evolution of the pressure coefficient, x = 65.77, ¥ = 10.25: (a) with boundary conditions I; (b) with boundary conditions IL

the eddies has almost disappeared in the vicinity of the
outlet boundary and a non-physical pressure gradient has
developed.

On the contrary, such irregular phenomena are not
observed in the case of the nonreflecting boundary condi-
tions. Figure 6 shows the isobars at ¢ = 60. It is remarkable
that the vortices are generated naturally and that no
irregular developments occur. Moreover, there are a series
of small vortices appearing downstream, which are com-
pletely damped in the case of boundary condition I. At
t = 100, Fig. 7 shows a correct development of the organized
structures, travelling through the numerical boundary
without blockage effects. It is noticeable that the organized
eddics have a repetitive character in time and space, which
is a main property of a coherent flow pattern.

Another insight of the history of the flow, including the
onset of instability, the waviness of the shear layer, and
finally the development of organized coherent structures
can be obtained by the help of streaklines. Figures 8 and 9

show the velocity fields and the streaklines, when the first
vortex reaches the outlet boundary, with boundary condi-
tions I and II, respectively. The features of the roll-up pro-
cess are shown clearly, in agreement with the experimental
visualizations [ 13, 20, 217]. Figures 10 and 11 are the zooms
of Figs. 8 and 9, respectively, for the outlet region. In Figure
10, the v component values of the velocity field are
excessively high and directed towards the lower boundary,
as if the flow is against a “wall.” Nevertheless, with the
nonreflecting boundary conditions (Fig. 11), the velocity
field keeps up a physically correct aspect in this region.
The performances of both boundary conditions are also
shown through the accuracy of solving the mass conserva-
tion equation. In the present method, this corresponds to
the convergence errors of the Poisson equation, solved by
an iterative ADI method [15, 16]. The convergence is
achieved after 20 iterations at each time step. The maximum
convergence errors over all the domain are plotted as a
function of time in Fig. 12. The errors for type I are of an
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FIG. 4. Isobars with boundary conditions of type I, Re = 2000, r =60.

FIG. 5. Same as Fig. 4, r=100.

FIG. 6. Isobars with nonreflecting boundary conditions, 1 =60.

FIG. 7. Same as Fig. 6, 1t =100.
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FIG. 8, Velocity field and streaklines, z =93, boundary conditions .

order 10~ * and have an increasing tendency, whereas for
type II, they are of an order 10~ ° only and show a more
stable evolution in time. The above results show clearly the
superiority of the nonreflecting boundary conditions over
those of type L

The influence of the computation domain size is now
examined. The computations are carried out with a smaller
value of L (L =59.15, test C, see Table I) to compare with
the preceding case (test B, L =67.19). Figures 13a and 13b
show the velocity fields and the streaklines at ¢ = 87 for the
two cases. It can be seen that there is almost no difference in
both results. For the same instant, Fig. 14 shows the isobars
of the two cases within the smaller domain area. A good
agreement for B and C is shown. This proves the efficiency
of the nonreflecting type boundary conditions, which allow
us to work with a reduced length of computation domain.

The temporal mean velocity profiles, with the non-
reflecting boundary conditions (test B), at several x
positions are given in Fig. 15 for a ¥ component. Through
these figures, the growth of the mixing layer is clearly
pointed out. A reliable measure of the spread of the free
mixing layer is the integral momentum thickness [23]
defined as .

1

=T Ty

IR CALESH CESEUATR

0 is determined by integration of the mean velocity profiles
shown in Fig. 15. The results are plotted in Fig. 16a. In the
region x < 13, the mixing layer has a parabolic spread due
to laminar growth and reaches a linear growth for x > 13,
due to the roll-up process and to the vortex mergings. This
is in accordance with the physical experiments [24]
{Fig. 16b).

The spectra of streamwise velocity fluctuation at several
points are shown in Fig. 17, This is obtained by taking a fast
Fourier transform of the time-dependent evolution of the
velocity. The spectral resolution is 0.012, obtained by using
8192 (2'*) time-domain points. A frequency peak appears
systematically in the spectra, which corresponds to the
fundamental frequency f,,. the shedding frequency of
Kelvin-Helmholtz vortices. Other peaks appear at 2f,,,
3f.s ... The corresponding Strouhal number is found to be

Srm=}—(”£°=0.122
1

(4.2)

with 6,=10.025, the initial momentum thickness. Accor-
dingly, 1., is equal to 4.88H,. This is quite close to the
experiment result 5.06H, [24].

NN

RIS

FIG. 9. Velocity field and strgaklines, =95, boundary conditions II.
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FIG. 10. Zoom of Fig. 10, outlet region, boundary conditions I.
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FIG. 13. Velocity field and streaklines, t =87: (a) test C; (b) test B,
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FIG. 14. Isobars at :=87: (2} test C; (b) test B,
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FIG. 16. (a) Spread of the mixing layer. (b} Spread of an unforced mixing layer, experimental results by Ho and Huang [24 ]; § is the momentum

thickness on the high-speed side.

5. CONCLUSION

A nonreflecting boundary condition is studied, which can
be correctly matched with the Navier-Stokes equations,
governing an incompressible unsteady free shear layer flow.
The numerical simulation, associated with this boundary
condition, is able to predict naturailly, without imposing
perturbations, the onset of instability and the development
of organized structures in the free shear layer, concerning
the transition of this flow towards turbulence. The

numerical results have shown a noticeable efficiency of the
nonreflecting boundary condition which minimizes con-
siderably the feedback noises and allows us to reduce the
length of computation domain. Moreover, the dynamical
characteristics of the flow, such as the roll-up process, the
growth of mixing layer, and the predominant frequency, are
predicted correctly in agreement with the experiments. It
can also be noted that this boundary condition has the
advantage of being easily implemented for other types of
incompressible unsteady elliptic flows, e.g., jets, flows
around aerofoils, and bluff bodies.
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